

Machine learning for regression problems

Filippo Biscarini (CNR, Milan, Italy)

filippo.biscarini@cnr.it

Introducing the dataset

Manna Maria Mari

DNA methylation and age in European bats

- Wild Bechstein's bats (Myotis bechsteinii)
- N = 62
- seven CpG sites (<u>here</u>)
- % methylation
- age: [0-14] years

Courses

Source: https://en.wikipedia.org/wiki/Bechstein%27s_bat

DNA methylation and age in European bats

Received: 26 February 2018	Revised: 21 April 2018	Accepted: 2 May 2018
Received. 20 February 2010	Revised. 21 April 2018	Accepted. 2 May 2010

DOI: 10.1111/1755-0998.12925

RESOURCE ARTICLE

WILEY MOLECULAR ECOLOGY RESOURCES Courses

Application of a novel molecular method to age free-living wild Bechstein's bats

Patrick G. R. Wright¹ | Fiona Mathews² | Henry Schofield³ | Colin Morris³ | Joe Burrage⁴ | Adam Smith⁴ | Emma L. Dempster⁴ | Patrick B. Hamilton¹

DNA methylation and age in European bats

		Age	CpG 1	CpG 2	CpG 3	CpG 4	CpG GRIA2	CpG GRIA2	
Sample	Age	category	TET2	TET2	TET2	TET2	1	2	ASPA 1
BabyBechs_SHW	0	Age 0-3	29	21	26	31	2	2	61
Dd_Juv_Hamgree									
n	0	Age 0-3	30	21	24	32	1	2	59
A2402	1	Age 0-3	44	38	51	53	1	5	48
A2414-2014	1	Age 0-3	48	36	50	46	1	2	53

Regression problems

Demonstration 2.1

\rightarrow linear_regression.Rmd

MANN Mann mann

Normalized discounted cumulative gain (NDCG)

NDCG is a **ranking metric** developed in information theory which has been applied to evaluation of genomic selection models

NDCG evaluates the **top** (e.g. 20%) **individuals in the ranking**, which are supposed to be the most relevant when comparing models

Normalized discounted cumulative gain (NDCG)

NDCG is a **ranking metric** developed in information theory which has been applied to evaluation of genomic selection models

NDCG evaluates the **top** (e.g. 20%) **individuals in the ranking**, which are supposed to be the most relevant when comparing models

$$DCG@k = \sum_{i=1}^k y[\pi({\hat{y}}_i)] \cdot d(i)$$
 .

The higher the DCG, the better

However, DCG is difficult to interpret (unbounded)

NDCG

Normalized discounted cumulative gain (NDCG)

NDCG is a **ranking metric** developed in information theory which has been applied to evaluation of genomic selection models

NDCG evaluates the **top** (e.g. 20%) **individuals in the ranking**, which are supposed to be the most relevant when comparing models

$$NDCG(y, \hat{y}) = rac{\sum_{i=1}^k ig(y[\pi(\hat{y})]_i \cdot d(i)ig)}{\sum_{i=1}^k (y[\pi(y)]_i \cdot d(i))}$$

NDCG values lie in [0,1]

Regression problems

Exercise 2.1

\rightarrow linear_regression.Rmd